175 research outputs found

    Contribution of pulsars to the gamma-ray background and their observation with the space telescopes GLAST and AGILE

    Full text link
    Luminosities and uxes of the expected population of galactic gamma-ray pulsars become foreseeable if physical distributions at birth and evolutive history are assigned. In this work we estimate the contribution of pulsar uxes to the gamma-ray background, which has been measured by the EGRET experiment on board of the CGRO. For pulsar luminosities we select some of the most important gamma-ray emission models, taking into account both polar cap and outer gap scenarios. We nd that this contribution strongly depends upon controversial neutron star birth properties. A comparison between our simulation results and EGRET data is presented for each model, nding an average contribution of about 10%. In addition, we perform the calculation of the number of new gamma-ray pulsars detectable by GLAST and AGILE, showing a remarkable di erence between the two classes of models. Finally, we suggest some improvements in the numerical code, including more sophisticated galactic m odels and di erent populations of pulsars like binaries, milliseconds, anomalous pulsars and magnetars.Comment: 6 pages, 6 figures, to be published in the Proceedings of the 6th International Symposium ''Frontiers of Fundamental and Computational Physics'' (FFP6), Udine (Italy), Sep. 26-29, 200

    Source population synthesis and the Galactic diffuse gamma-ray emission

    Get PDF
    Population synthesis is used to study the contribution from undetected sources to the Galactic ridge emission measured by EGRET. Synthesized source counts are compared with the 3rd EGRET catalogue at low and high latitudes. For pulsar-like populations, 5-10% of the emission >100 MeV comes from sources below the EGRET threshold. A steeper luminosity function can increase this to 20% without violating EGRET source statistics. Less luminous populations can produce much higher values without being detected. Since the unresolved source spectrum is different from the interstellar spectrum, it could provide an explanation of the observed MeV and GeV excesses above the predictions, and we give an explicit example of how this could work.Comment: Astrophysics and Space Science, in press. (Proceedings of Conference 'The multi-messenger approach to high-energy gamma-ray sources', Barcelona, 2006). Minor changes for accepted version, updated reference

    Multiwavelength analysis of four millisecond pulsars

    Full text link
    Radio timing observations of millisecond pulsars (MSPs) in support of Fermi LAT observations of the gamma-ray sky enhance the sensitivity of high-energy pulsation searches. With contemporaneous ephemerides we have detected gamma-ray pulsations from PSR B1937+21, the first MSP ever discovered, and B1957+20, the first known black-widow system. The two MSPs share a number of properties: they are energetic and distant compared to other gamma-ray MSPs, and both of them exhibit aligned radio and gamma-ray emission peaks, indicating co-located emission regions in the outer magnetosphere of the pulsars. However, radio observations are also crucial for revealing MSPs in Fermi unassociated sources. In a search for radio pulsations at the position of such unassociated sources, the Nan\c{c}ay Radio Telescope discovered two MSPs, PSRs J2017+0603 and J2302+4442, increasing the sample of known Galactic disk MSPs. Subsequent radio timing observations led to the detection of gamma-ray pulsations from these two MSPs as well. We describe multiwavelength timing and spectral analysis of these four pulsars, and the modeling of their gamma-ray light curves in the context of theoretical models.Comment: 4 pages, 3 figures, to appear in the proceedings of the Pulsar 2010 Conference, Italy, 10 - 15 October 201

    Force-free magnetosphere of an aligned rotator with differential rotation of open magnetic field lines

    Full text link
    Here we briefly report on results of self-consistent numerical modeling of a differentially rotating force-free magnetosphere of an aligned rotator. We show that differential rotation of the open field line zone is significant for adjusting of the global structure of the magnetosphere to the current density flowing through the polar cap cascades. We argue that for most pulsars stationary cascades in the polar cap can not support stationary force-free configurations of the magnetosphere.Comment: 5 pages, 4 figures. Presented at the conference "Isolated Neutron Stars: from the Interior to the Surface", London, April 24-28, 2006; to appear in Astrophysics and Space Science. Significantly revised version, a mistake found by ourselfs in the numerical code was corrected, all presented results are obtained with the correct version of the cod

    Structure of pair winds from compact objects with application to emission from bare strange stars

    Get PDF
    We present the results of numerical simulations of stationary, spherically outflowing, electron-positron pair winds, with total luminosities in the range 10^{34}- 10^{42} ergs/s. In the concrete example described here, the wind injection source is a hot, bare, strange star, predicted to be a powerful source of electron-positron pairs created by the Coulomb barrier at the quark surface. We find that photons dominate in the emerging emission, and the emerging photon spectrum is rather hard and differs substantially from the thermal spectrum expected from a neutron star with the same luminosity. This might help distinguish the putative bare strange stars from neutron stars.Comment: 4 pages, 6 figures, 1 table, added references, to appear in the proceedings of the conference "Isolated Neutron Stars: from the Surface to the Interior", London, UK, 24-28 April 200

    Matter-induced vertices for photon splitting in a weakly magnetized plasma

    Get PDF
    We evaluate the three-photon vertex functions at order BB and B2B^{2} in a weak constant magnetic field at finite temperature and density with on shell external lines. Their application to the study of the photon splitting process leads to consider high energy photons whose dispersion relations are not changed significantly by the plasma effects. The absorption coefficient is computed and compared with the perturbative vacuum result. For the values of temperature and density of some astrophysical objects with a weak magnetic field, the matter effects are negligible.Comment: 14 pages, 1 figure. Accepted for publication in PR

    Adjustment of the electric current in pulsar magnetospheres and origin of subpulse modulation

    Full text link
    The subpulse modulation of pulsar radio emission goes to prove that the plasma flow in the open field line tube breaks into isolated narrow streams. I propose a model which attributes formation of streams to the process of the electric current adjustment in the magnetosphere. A mismatch between the magnetospheric current distribution and the current injected by the polar cap accelerator gives rise to reverse plasma flows in the magnetosphere. The reverse flow shields the electric field in the polar gap and thus shuts up the plasma production process. I assume that a circulating system of streams is formed such that the upward streams are produced in narrow gaps separated by downward streams. The electric drift is small in this model because the potential drop in narrow gaps is small. The gaps have to drift because by the time a downward stream reaches the star surface and shields the electric field, the corresponding gap has to shift. The transverse size of the streams is determined by the condition that the potential drop in the gaps is sufficient for the pair production. This yields the radius of the stream roughly 10% of the polar cap radius, which makes it possible to fit in the observed morphological features such as the "carousel" with 10-20 subbeams and the system of the core - two nested cone beams.Comment: 8 pages, 1 figur

    Nonlinear electrodynamics and CMB polarization

    Full text link
    Recently WMAP and BOOMERanG experiments have set stringent constraints on the polarization angle of photons propagating in an expanding universe: Δα=(2.4±1.9)\Delta \alpha = (-2.4 \pm 1.9)^\circ. The polarization of the Cosmic Microwave Background radiation (CMB) is reviewed in the context of nonlinear electrodynamics (NLED). We compute the polarization angle of photons propagating in a cosmological background with planar symmetry. For this purpose, we use the Pagels-Tomboulis (PT) Lagrangian density describing NLED, which has the form L(X/Λ4)δ1  XL\sim (X/\Lambda^4)^{\delta - 1}\; X , where X=1/4FαβFαβX=1/4 F_{\alpha\beta} F^{\alpha \beta}, and δ\delta the parameter featuring the non-Maxwellian character of the PT nonlinear description of the electromagnetic interaction. After looking at the polarization components in the plane orthogonal to the (xx)-direction of propagation of the CMB photons, the polarization angle is defined in terms of the eccentricity of the universe, a geometrical property whose evolution on cosmic time (from the last scattering surface to the present) is constrained by the strength of magnetic fields over extragalactic distances.Comment: 17 pages, 2 figures, minor changes, references adde
    corecore